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Abstract 

Several R packages can tune supervised learning methods, but some packages are so 
comprehensive they are difficult to use. Others are easier to use, but will only tune one or 
two methods. This paper presents an alternative R package that uses an optimizer to remove 
much of the frustration with parameter tuning for gradient boosting machines, support 
vector machines, and adaboost. 
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1. Introduction 

 
Many tools exist in R to tune supervised learning models. The package caret (Kuhn 2008) 
provides an extensive set of tools for tuning many different supervised learning algorithms. 
However, caret is so extensive it is difficult to figure out how to use it to tune. Caret is also 
slow. Other packages contain intuitive and fast methods for tuning, but they are specific to 
certain models. For example, e1071 (Myer et al. 2017) contains a function called tune.svm 
that is able to quickly tune a support vector machine (SVMs) with good results. However, 
if you wish to try several different learning methods, you have to hunt to find good tuning 
functions for each of the methods. It is also difficult to determine which parameters should 
be tuned and identify a reasonable range of values for those parameters.  
 
The R package EZtune was designed to address many of these issues. The package will 
tune SVMs, adaboost, and gradient boosting machines (GBMs). A genetic algorithm or a 
quasi-Newton optimizer is used to determine an optimal set of tuning parameters. The user 
does not need know which parameters to tune or have a knowledge of a reasonable range 
of values for the tuning parameters. All three methods can be tuned using one function with 
only a few arguments. EZtune is a simple way for someone who is new to learning methods 
to find a model with optimal accuracy. 
 

 
1.1 Format of the Package 

The package EZtune consists of only two functions. The first function is called EZtune and 
has the form:  
 
EZtune(x, y, type, method = "ada", optimizer = "ga", cv = FALSE, 
fold = 10) 
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Where,  
 

x = matrix of dependent variables 
y = numeric vector of 0’s and 1’s 
type = type of response; currently only a binary response is accepted 
method = “ada” for adaboost, “svm” for SVMs, and “gbm” for GBMs 
optimizer = “ga” for genetic algorithm or “optim” for quasi-Newton method 
cv = FALSE for using resubstitution to assess accuracy, TRUE for using  

cross-validation to assess accuracy 
fold = The number of folds for n-fold cross-validation. This is ignored  

if cv=FALSE 
 
The function produces the following output:  

• Object$summary: matrix of selected parameters and the final accuracy. Each 
estimate parameter can be called independently 

• Object$nu, Object$cost, etc. 
• Object$accuracy: best accuracy obtained by optimizer 
• Object$best.model: the best model generated using optimized parameters 

o Adaboost: model produced by package ada 
o SVM: model produced by e1071 
o GBM: model produced by gbm 

• Object$loss: returns the loss for ada 
• Object$kernal: returns kernal for svm 

 
The second function is called EZtune.cv. It takes the object produced by EZtune and 
computes a cross-validated accuracy. This function is useful for obtaining a better measure 
of accuracy when resubstitution is used to select tuning parameters. It is also useful for 
obtaining an average measure of accuracy over many simulations.  
 
 
1.2 Methods Used in Constructing EZtune 

EZtune was constructed using several R packages. The packages e1071 (Myer et al. 2017), 
ada (Culp et al. 2016), and gbm (Ridgeway 2017) were used to generate the SVM models 
and the boosted trees. Models produced by EZtune are in the form of the package from 
which they were generated. Thus, the resulting models can be used as if they are a model 
from the respective package.  
 
Optimization is done using the functions optim from the stats R package (R Core Team 
2017) and ga from the package GA (Scrucca 2013). The function optim is used with the 
argument BFGS to optimize using a quasi-Newton method that was published 
simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. The function ga was 
used to implement the genetic algorithm. The defaults for ga are used to optimize. 
Optimization was done exclusively on accuracy.  
 
The current version of the package can only handle data with a binary response. A version 
that can address multiple classes and a continuous response is in development.  
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2. Performance Assessment 

 
2.1 Set Up  

Computations using EZtune were done on five datasets to assess the performance of the 
package: abalone, echocardiogram, ionosphere, Titanic, and lichen. All five datasets have 
a binary response. The titanic and lichen datasets have a test dataset associated with them 
that allows for more comprehensive evaluation of the package.  
 
Datasets were cleaned prior to analysis. Missing values were removed from the datasets as 
were any variables that have too many categories, are too messy, are a case identifier, or 
are alternative response variables. None of the variables were transformed. Models were 
run on the remaining variables and observations ‘as is’.  
 
Each possible combination of the following was done for each dataset:  

• Adaboost, GBM, and SVM 
• Optimization with 10-fold cross-validation 
• Optimization with resubstitution 
• Optimization with quasi-Newton optimizer 
• Optimization with genetic algorithm 

 
The accuracy achieved by EZtune is reported for each run. EZtune.cv was run 10 times for 
each model and each of the cross-validated accuracies were averaged to obtain a mean 
cross-validated accuracy. The test data for the Titanic and lichen datasets were used to 
further assess the accuracy of the tuned model. The following sections show the results for 
the five datasets. The method, estimated parameters, optimized accuracies, and cross-
validated accuracies are reported for each test.  
 
2.1.1 Abalone Data 

The abalone dataset is part of the AppliedPredictiveModeling package (Kuhn 2014) in R. 
It consists of seven continuous dependent variables and a response variable with three 
categories: male, female, and infant. Observations with an “infant” response were removed 
prior to calculations. The data have 2835 observations and do not have any missing values. 
Tables 1-3 show the results of the calculations. The largest accuracies in each table are in 
boldface type. 
 
The results show that the when accuracy is optimized using resubstitution the computed 
accuracy is much higher than when cross-validation is used to optimize. However, when 
the cross-validated accuracies are compared for resubstitution and cross-validation 
optimizers they are very close. The cross-validated accuracies from the two different 
optimizers are also similar. This indicates that with the abalone data it does not matter if 
tuning is done using resubstitution or cross-validation to optimize accuracy. It also 
indicates that the genetic algorithm and the quasi-Newton optimizer perform equally well 
in this case.  
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Table 1: Results of EZtune with adaboost on the abalone data  

Method 
Number of 
Iterations Nu Accuracy 

Cross-Validation 
Accuracy 

GA Resub 93 1.652 0.765 0.534 
GA CV 38 0.054 0.558 0.557 

Optim Resub 97 0.809 0.675 0.541 
Optim CV 100 0.563 0.544 0.546 

 
Table 2: Results of EZtune with gradient boosting machines on the abalone data  

Method 
Interaction 

Depth 
Number of 

Trees Shrinkage Accuracy 

Cross-
Validation 
Accuracy 

GA Resub 5 3760 0.779 1.000 0.525 
GA CV 3 4610 0.004 0.551 0.550 
Optim Resub 2 500 0.100 0.703 0.537 
Optim CV 1 498 0.100 0.555 0.558 

 
Table 3: Results of EZtune with support vector machines on the abalone data  

Method Epsilon Cost Accuracy 
Cross-Validation 

Accuracy 
GA Resub 2.272 98.960 0.621 0.552 

GA CV 1.486 40.239 0.560 0.549 
Optim Resub 0.100 0.647 0.563 0.550 
Optim CV 0.823 0.654 0.553 0.549 

 
2.1.2 Echocardiogram Data 

The echocardiogram dataset was obtained from the University of California Irvine Machine 
Learning Repository (Lichman 2013). The dataset consists of 13 variables and 133 
observations. One of the variables is the number of months that a patient survived and 
another is a binary response about general survival. The variable for months survived was 
not used for analysis. All other variables were used for analysis. Observations with missing 
values were removed from the data prior to analysis. One-hundred and seven observations 
remain after the missing values are removed. Tables 4-6 show the results of the 
calculations. The largest accuracies in each table are in boldface type. 
 
The results show that the when accuracy is optimized using resubstitution the computed 
accuracy is much higher than when cross-validation is used to optimize. However, when 
the cross-validated accuracies are compared for resubstitution and for cross-validation 
optimizers they are very close except for the genetic algorithm with GBM and SVM. The 
cross-validated accuracies from the different optimizers are also similar. This indicates that 
with the echocardiogram data it matters if tuning is done using resubstitution or cross-
validation to optimize accuracy. It also indicates that the genetic algorithm and the quasi-
Newton optimizer perform similarly well in this case.  
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Table 4: Results of EZtune with adaboost on the echocardiogram data.  

Method 
Number of 
Iterations Nu Accuracy 

Cross-Validation 
Accuracy 

GA Resub 79 1.499 1.000 0.637 
GA CV 14 0.114 0.738 0.690 

Optim Resub 101 1.078 1.000 0.635 
Optim CV 100 0.500 0.645 0.654 

 
Table 5: Results of EZtune with gradient boosting machines on the echocardiogram data. 

Method 
Interaction 

Depth 
Number of 

Trees Shrinkage Accuracy 

Cross-
Validation 
Accuracy 

GA Resub 8 1843 0.745 1.000 0.639 
GA CV 8 2973 1.803 0.720 0.504 
Optim Resub 2 500 0.100 1.000 0.644 

Optim CV 2 500 0.100 0.617 0.620 
 

Table 6: Results of EZtune with support vector machines on the echocardiogram data.  

Method Epsilon Cost Accuracy 
Cross-Validation 

Accuracy 
GA Resub 0.787 95.202 0.972 0.580 
GA CV 1.623 0.358 0.673 0.680 

Optim Resub 0.100 1.000 0.813 0.639 
Optim CV 0.167 2.921 0.626 0.621 

 
2.1.3 Ionosphere Data 

The ionosphere dataset was obtained from the University of California Irvine Machine 
Learning Repository (Lichman 2013). The dataset consists of 34 continuous variables, a 
binary response variable, and 351 observations. There are no missing values in the dataset. 
Tables 7-9 show the results of the calculations. The largest accuracies in each table are in 
boldface type. 
 
The results show that the when accuracy is optimized using resubstitution the computed 
accuracy is much higher than when cross-validation is used to optimize. However, when 
the cross-validated accuracies are compared for resubstitution and for cross-validation 
optimizers they are very close. The cross-validated accuracies from the different optimizers 
are also similar. This indicates that with the ionosphere data it does not matter if tuning is 
done using resubstitution or cross-validation to optimize accuracy. It also indicates that the 
genetic algorithm and the quasi-Newton optimizer perform similarly well in this case.  
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Table 7: Results of EZtune with adaboost on the ionosphere data.  

Method 
Number of 
Iterations Nu Accuracy 

Cross-Validation 
Accuracy 

GA Resub 61 1.322 1.000 0.921 
GA CV 60 0.158 0.949 0.932 

Optim Resub 100 0.500 1.000 0.928 
Optim CV 100 0.500 0.929 0.928 

 
Table 8: Results of EZtune with gradient boosting machines on the ionosphere data. 

Method 
Interaction 

Depth 
Number of 

Trees Shrinkage Accuracy 

Cross-
Validation 
Accuracy 

GA Resub 4 1617 0.559 1.000 0.893 
GA CV 3 1189 0.141 0.937 0.930 
Optim Resub 2 500 0.100 1.000 0.927 
Optim CV 2 500 0.100 0.937 0.933 

 
Table 9: Results of EZtune with support vector machines on the ionosphere data.  

Method Epsilon Cost Accuracy 
Cross-Validation 

Accuracy 
GA Resub 0.835 98.021 1.000 0.935 
GA CV 0.707 19.879 0.957 0.951 

Optim Resub 0.100 1.000 0.966 0.942 
Optim CV 0.098 0.979 0.946 0.942 

 
2.1.4 Titanic Data 

The Titanic dataset was obtained from the Kaggle website (www.kaggle.com). The dataset 
consists of 11 continuous and discrete predictor variables, a binary response variable, and 
891 observations. The data contain several missing values. Four variables were removed 
because they are unique identifiers for the passengers. Missing values were imputed with 
the median for continuous variable or the most common factor for categorical variables. 
The Titanic dataset has a test dataset that can be used for additional verification of the 
models. The test dataset was prepared in the same manner as the trial dataset. Tables 10-12 
show the results of the calculations including evaluation of the test dataset with each of the 
models. The largest accuracies in each table are in boldface type. 
 
The results show that the when accuracy is optimized using resubstitution the computed 
accuracy is much higher than when cross-validation is used to optimize. However, when 
the cross-validated accuracies are compared for resubstitution and for cross-validation 
optimizers they are very close. Accuracies obtained form the test dataset show the same 
similarity between cross-validation and resubstitution, except in the case of adaboost. The 
test data accuracies from the cross-validated adaboost model are notably higher than for 
the models that were optimized on resubstitution accuracies. The test data accuracies for 
the model using the genetic algorithm with adaboost are also higher than those obtained 
from the quasi-Newton optimizer. Otherwise, the cross-validated accuracies from the 
different optimizers are similar. This indicates that with the Titanic data it does not matter 
if tuning is done using resubstitution or cross-validation to optimize accuracy except for 
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adaboost. It also indicates that the genetic algorithm may perform a little better than the 
quasi-Newton optimizer for adaboost with these data. 
 

Table 10: Results of EZtune with adaboost on the Titanic data.  

Method 
Number of 
Iterations Nu Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 76 1.616 0.976 0.790 0.679 
GA CV 41 0.285 0.842 0.826 0.766 

Optim Resub 98 1.533 0.973 0.793 0.646 
Optim CV 100 0.500 0.824 0.815 0.703 

 
Table 11: Results of EZtune with gradient boosting machines on the Titanic data. 

Method 
Interaction 

Depth 
Number of 

Trees Shrinkage Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 4 4007 0.287 0.980 0.790 0.670 
GA CV 5 2436 0.017 0.827 0.825 0.722 
Optim Resub 2 500 0.100 0.895 0.825 0.722 
Optim CV 2 500 0.100 0.828 0.829 0.727 

 
Table 12: Results of EZtune with support vector machines on the Titanic data.  

Method Epsilon Cost Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 2.443 98.437 0.869 0.802 0.770 
GA CV 0.319 8.587 0.829 0.820 0.780 
Optim Resub 0.100 1.000 0.834 0.825 0.794 

Optim CV 0.100 1.000 0.824 0.825 0.794 

 
2.1.5 Lichen Data 

The lichen dataset was obtained from Cutler et al. (2007). The dataset consists of 53 
continuous and discrete variables and 840 observations. There are no missing values in the 
dataset. The response of seven lichens are recorded in the dataset. The presences and 
absences of the lichen Lobaria oregana was used as the response variable for the 
calculations. The variables for the other six lichens were removed. The variable for plot 
number was also removed because it is a unique identifier. This dataset has a set of test 
data that were used to assess model accuracy. Tables 13-15 show the results of the 
calculations including evaluation of the test dataset with each of the models. The largest 
accuracies in each table are in boldface type. 
 
The results show that the when accuracy is optimized using resubstitution the computed 
accuracy is much higher than when cross-validation is used to optimize. However, when 
the cross-validated accuracies are compared for resubstitution and for cross-validation 
optimizers they are very close to each other as they are for the other datasets. Accuracies 
obtained from the test dataset show the similar accuracies between cross-validation and 
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resubstitution and between the two optimization methods. This indicates that with the 
lichen data it does not matter if tuning is done using resubstitution or cross-validation to 
optimize accuracy. It also indicates that the genetic algorithm and the quasi-Newton 
optimizer perform similarly well. 
 

Table 13: Results of EZtune with adaboost on the lichen data.  

Method 
Number of 
Iterations Nu Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 45 1.085 1.000 0.831 0.614 
GA CV 74 0.701 0.863 0.838 0.636 

Optim Resub 100 0.500 1.000 0.843 0.630 
Optim CV 102 0.328 0.843 0.846 0.636 

 
Table 14: Results of EZtune with gradient boosting machines on the lichen data. 

Method 
Interaction 

Depth 
Number of 

Trees Shrinkage Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 6 1926 0.503 1.000 0.831 0.618 
GA CV 3 1104 0.019 0.851 0.845 0.629 

Optim Resub 3 501 0.197 1.000 0.834 0.623 
Optim CV 2 500 0.100 0.829 0.837 0.613 

 
Table 15: Results of EZtune with support vector machines on the lichen data.  

Method Epsilon Cost Accuracy 

Cross-
Validation 
Accuracy 

Test Data 
Accuracy 

GA Resub 2.567 98.132 0.995 0.829 0.611 
GA CV 1.699 5.524 0.846 0.840 0.619 
Optim Resub 0.100 1.000 0.887 0.845 0.650 

Optim CV 0.086 1.470 0.848 0.849 0.638 
 
2.1.5 Summary of Results 

All five of the datasets show similar results. The optimized accuracies obtained from 
EZtune are higher when resubstitution is used for optimization rather than cross-validation. 
However, when a cross-validation accuracy is obtained from the model tuned using 
resubstitution, the accuracy is very close to that of the model tuned using cross-validation 
with only one exception. Tuning is much faster when resubstitution is used to optimize 
than when cross-validation is used to optimize. The results from the 5 datasets indicate that 
it may be sufficient to tune the model using resubstitution and then use EZtune.cv to obtain 
a better accuracy. The results also indicate that the quasi-Newton optimizer and the genetic 
algorithm work similarly well in most cases.  
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3. Future Work 

 
The package EZtune is currently working well for binary datasets. It can be downloaded 
from https://github.com/jillbo1000/EZtune. Future developments include:  

• Options for continuous response  
• Options for a response with more than two classes 
• Upgrade code for greater speed and optimization 
• Investigate use of other optimizers 
• Add features for handling large datasets in a reasonable amount of time 
• Add simple ways to alter additional parameters such as kernal and loss 
• Incorporate other packages 
• Add an option to optimize on the area under the ROC curve 
• Make a vignette 
• Post the package on CRAN  
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