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Abstract
The accuracy of weather forecasts is dependent on many factors including the closeness of the
forecast, location, and changes in weather forecasting methods. Understanding the reliability and
the shortcomings of these predictions across the highly varied climate zones of the United States
provides valuable context for future predictions. Graphical exploration of weather forecast data
provides insight on factors associated with weather forecast accuracy. In addition, these graphi-
cal representations aid in detecting region-specific trends and anomalies associated with weather
predictions in the United States.
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1. Introduction

From the bitter cold and wet winters along Lake Superior, to the oppressively hot and dry
summers in the Valley of the Sun, Arizona, the United States (U.S.) experiences a wide
range of climatic extremes. These extremes, in turn, create unique challenges forecasting
the weather. Characterizing forecast errors across such a diverse landscape is equally chal-
lenging, requiring multi-dimensional visualizations across space, time, and various climate
measurements. In spite of these challenges, better understanding the nature and patterns
in forecast errors across the U.S. helps meteorologists as they strive to improve weather
forecasts. It can also help everyday Americans determine how much faith they should put
in the weather forecast on the day of their picnic.

The 2018 Data Expo of the Sections on Statistical Computing and Statistical Graph-
ics of the American Statistical Association (ASA) provided an opportunity to explore and
compare weather forecast errors across the U.S. Our analysis focused on the question:

How do weather forecast errors differ across regions of the U.S.?

This motivating question prompted the subsequent questions:

• Can we cluster U.S. weather stations into regions based on weather characteristics?

• How do forecast errors change by region and by season?

• Who are the winners and losers in terms of overall forecast accuracy?

• Which variables are important in determining forecast errors?

• How do error variables correlate and do these correlations change by region?
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This article is devoted to answering these questions. In Section 2.1, we summarize the
data and the associated cleaning process. We then show in Section 2.2 that the U.S. can be
clustered into six well-defined weather regions using the provided climate measurements,
elevation, and distance to coast. These clusters, or weather regions, form the basis of our
comparison of forecast accuracy across the U.S. through a series of multi-dimensional plots
and variable importance analyses described in Section 3. Next, we introduce in Section 4
the interactive application we created to enhance our data explorations. Finally, we con-
clude in Section 5 that the climate differences that distinguish the weather regions of the
U.S. also create region-specific patterns and differences in forecast accuracy.

2. Measurement Explorations

The data contain measurements and forecasts for 113 U.S. weather stations from July 2014
to September 2017. These data can be obtained at the following URL:

http://community.amstat.org/stat-computing/data-expo/
data-expo-2018.

Daily measurements for eight different weather metrics were recorded for each location
including temperature, precipitation, dew point, humidity, sea level pressure, wind speed,
cloud cover, and visibility. Many notable weather events are also textually recorded. Daily
measurements of the minimum, maximum, and mean were recorded for each metric.

2.1 Data Cleaning

Table 1 shows the weather variables included in our final analysis. We excluded mean daily
measurements for temperature, precipitation, dew point, humidity and sea level pressure as
these measurements were near perfect linear combinations of their corresponding minimum
and maximum measurements. We also excluded maximum visibility from the analysis as
this measurement was equal to 10 miles for more than 97% of all recorded measurements.
Lastly, we combined the information provided by maximum wind speed and maximum
wind gust by retaining only the lower of the two measurements after removing outliers.
The decision to combine the information from these two wind variables was motivated by
the fact that 13% of all maximum wind gust values were missing. In addition, it is difficult
to separate unusually high, yet valid, maximum wind gust and wind speed measurements
from true outliers.

We supplemented the provided location information with elevation and distance to the
nearest major coast. Elevation information was obtained for each location through Google’s
API server (Google, 2018) via the rgbif R package (Chamberlain, 2017). Distance to coast
was calculated as the closest geographical distance between each measurement location and
one of the vertices in the U.S. Medium Shoreline dataset (NOAA, 2018), which includes
all ocean and Great Lakes coasts for the contiguous 48 states. Because this dataset does
not include the coastlines of Alaska and Hawaii, distance to coast calculations for these
locations used manually extracted shorelines from NOAA’s Shoreline Data Explorer (NGS,
2018). We acknowledge there are limitations to this method of distance calculation, as
calculations for some locations, such as Arizona, are slightly longer than they would be
had we used shoreline information for Mexico’s Gulf of California. Nevertheless, these
measurements effectively separate inland weather stations from coastal stations.

Some stations did not record relevant climate variables. When possible, these missing
observations were replaced with corresponding measurements obtained from the nearest
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Table 1: List of weather variables included in our analysis. All observations outside the
indicated ranges were removed prior to our analysis.

Variable Unit Range
Min/Max Temperature ◦F [−37, 127]
Precipitation in [0, 12.95]
Min/Max Dew Point ◦F [−50, 90]
Min/Max Humidity % (0, 100]
Min/Max Sea Level Pressure inHg [28.2, 31.2]
Mean/Max Wind Speed mph [0, 70]
Min Visibility mi [0, 10]
Cloud Cover okta {0, 1, · · · , 8}
Distance to Coast∗ mi [0, 807]
Elevation∗ ft [3, 7422]
∗ manually added data

National Weather Service (NWS) first order station as obtained through the National Cli-
matic Data Center (NCDC) (NOAA, 2018). Missing values include wind speed in Balti-
more, Maryland, precipitation in Denver, Colorado, and replacements of outlier precipi-
tation measurements at multiple locations. When replacements were not readily obtained
through the NCDC, systematic missing observations were replaced with corresponding ob-
servations from the nearest geographical neighbor within the dataset, as was the case for
visibility and cloud cover in Baltimore, Maryland (replaced with Dover, Delaware, mea-
surements) and Austin, Nevada (replaced with Reno, Nevada, measurements).

Table 1 also shows the observation ranges for each of the included variables. These
measurement ranges are either definitional, such as the bounds for humidity, or simply
practical, such as the bounds for temperature. All measurements falling outside the bounds
shown in Table 1 were removed prior to our analysis. Several individual outliers were also
removed or replaced based on location-specific inconsistencies including

• removal of one unusually low minimum temperature measurement in Honolulu,
Hawaii, (< 10◦F) and two in San Francisco, California (< 20◦F);

• replacement of the following unusually high precipitation readings with precipitation
readings at nearby weather stations (NOAA, 2018):

– Oklahoma City, Oklahoma, on 8/10/2017 (38.33in → 0.8in)

– Salmon, Idaho, on 4/21/2015, 5/2/2016, and 5/3-4/2017 (10.02in → 0in)

– Flagstaff, Arizona, on 12/24/2016 (7.48in → 0.97in)

– Indianapolis, Indiana, on 7/15/2015 (9.99in → 0in);

• removal of one unusually low minimum dew point measurement in Honolulu, Hawaii
(< 40◦F), two in Hoquiam, Washington (< 0◦F), four in Las Vegas, Nevada
(< −15◦F), and two in Denver, Colorado (< −20◦F).

2.2 Data Clustering

The U.S. has been divided into regions based on environmental characteristics such as
watersheds and climate. We examined the set of existing environmental regions and were
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unable to find one that made sense in terms of weather. We created our own weather
regions by clustering the weather stations based on the metrics in Table 1. Thus, clusters
are defined by weather characteristics observed at each station. We did not incorporate
forecast accuracy because this can change as models are improved and we wanted to form
clusters using the physical characteristics of each station.

Once cleaned, the data were aggregated across each weather station by taking the mean
and standard deviation of each variable in Table 1 for each station over the period of record.
This left one mean and one standard deviation for each of the variables in Table 1 for each
of the 113 weather stations.

Hierarchical clustering (Friedman et al., 2001, pp. 520-526) with Euclidean distance
and Ward’s minimum variance clustering method (Murtagh and Legendre, 2014) were used
to identify clusters. The clusters were examined spatially to determine the performance of
the clustering and choose the number of clusters. Because we were looking for clusters that
divide the U.S. into weather regions, we wanted to ensure they were of a sufficient size to
be practical. We chose six clusters. Five clusters resulted in one cluster that included all of
the stations from the Midwest to the East Coast which we felt is too large. Seven clusters
produced a cluster that contained only five weather stations which seemed to be too small.

Figures 1 and 2 show the results of the cluster analysis. Figure 3 shows a parallel
coordinate plot of the characteristics for each weather region. The Z-score for mean and
standard deviation for each of the variables in Table 1 was computed and plotted on the
parallel coordinate plot. It is difficult to distinguish the six weather regions from each other
so an interactive app was created that provides a better view of the features of each cluster.
The app is discussed in Section 4 in this article.

The names and characteristics of each weather cluster are as follows:

• Cali-Florida: Warm and humid with high dew point and pressure. Low variability
in almost all measurements.

• Southeast: Warm and humid with lots of rain. High variability in precipitation and
low variability in temperature.

• Northeast: Cold, humid, and low visibility. High variability in temperature, dew
point, and pressure.

• Intermountain West: Cold and dry, with high variability in temperature, wind
speed, and pressure. Low variability in precipitation and dew point.

• Midwest: Landlocked with high wind speed and high variability in temperature,
pressure, and wind speed.

• Southwest: Warm, sunny, and dry with little variation. High variability in wind
speed and humidity.

3. Forecast Error Explorations

Forecasts were restricted to minimum temperature, maximum temperature, and the proba-
bility of precipitation. We found no obvious outliers in the weather forecasts. Rather, the
forecast data were replete with duplicate values for minimum temperature and precipita-
tion. We retained the lowest forecast of minimum temperature and the highest forecast of
precipitation probability for each forecast.

Forecast lags of six or seven days contained a large number of missing values. Forecast
lag is defined as the number of days between the day of forecast and the day being forecast.
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Cali−Florida Southeast Northeast Intermountain West Midwest Southwest

Figure 1: Map of weather clusters.

Thus, same day forecasts would have a lag of 0, one day prior forecasts a lag of 1, and so
on. We removed all forecasts past lag 5. We also removed all forecasts containing negative
lags (i.e., a forecast made after the actual observation).

The forecast error for minimum and maximum temperature is calculated as the abso-
lute difference between forecast and measurement. The forecast error for precipitation is
measured using the Brier Skill Score (BSS), a well-known measure of probabilistic forecast
accuracy (Weigel et al., 2007). It is defined for a particular weather station as

BSS = 1−

N∑
i=1

M∑
j=0

(Yij −Oi)
2

N∑
i=1

M∑
j=0

(P −Oi)
2

(1)

where

• Yij ∈ [0, 1] is the predicted probability of rain on day i with forecast lag j;

• Oi ∈ {0, 1} is a binary variable with value 1 if any precipitation fell during the
day and 0 otherwise. We defined a precipitation event as a positive precipitation
measurement or the inclusion of the words “rain” or “snow” in the event information;

• P ∈ [0, 1] is the average daily chance of precipitation over the period of interest,

defined as P = 1
N

N∑
i=1

Oi;

• N denotes the number of days of recorded precipitation in the period of record and
M ∈ {0, . . . , 5} denotes the number of forecast lags.
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Figure 2: Dendrogram of weather clusters.
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Figure 3: Parallel coordinate plot of the means and standard deviations of the weather
variables listed in Table 1. Each line in the plot represents one of the 113 weather stations.
The color of the lines match the weather region to which the station belongs.

Note that the BSS ∈ (−∞, 1], with 1 indicating a perfect forecast skill and movement
towards −∞ indicating worse forecasts. We chose to use 1 − BSS so all three error vari-
ables would be consistent in orientation. The following subsections explore differences in
forecast errors both between and within the previously defined weather regions visualized
in Figure 1. Forecast errors are averaged over lag and in some cases averaged over month
in each graph. The visualizations in the following subsections confirm our hypothesis that
different weather regions experience distinctly different weather forecast patterns.

3.1 Seasonal Trends

The position of the U.S. in the northern hemisphere makes most of the country subject to
distinct weather seasons. Seasons are most pronounced in the northern U.S. We hypoth-
esize that the forecast error behavior will be inextricably linked to this seasonality. We
explore this through a series of space-time graphs. Modeling space and time simultane-
ously creates a three-dimensional problem usually visualized as small multiples. Small
multiples are “a series of graphics, showing the same combination of variables [e.g., lat-
itude and longitude], indexed by changes in another variable [e.g., time]” (Tufte, 2002,
p. 170). The issue with this approach is that it becomes difficult to visually comprehend all
but the most drastic changes from graph to graph. One alternative that allows simultaneous
visualizations of both space and time is through the use of glyphs, or symbols, that allow
for multi-dimensional visualizations in a spatial context (Carr et al., 1992; Wickham et al.,
2012).

Figure 4 shows glyph plots of seasonal forecast errors throughout time. The forecast
error is visualized as the scaled distance from a center point to the edge of a polygon with
twelve observations starting with January at the 12:00 position and proceeding clockwise.
The asymmetry of the glyphs about their center points illustrates how forecast errors change
across time and across space. For example, locations in the Northeast are worse at forecast-
ing precipitation in the winter than in the summer, while locations in the Southeast forecast
precipitation equally well all year long.

In addition to highlighting forecasting asymmetries, Figure 4 reveals location-specific
anomalies. For example, San Francisco, California, predicts minimum temperatures well
all year long, but only predicts maximum temperatures well in the winter months. This is
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likely due to chilling coastal fogs known to frequent the region throughout the year that
can create sharp temperature differences over short distances (Nolte, 2016). The struggle
to predict temperature seems reasonable in light of these facts as this measurement location
is more than 11 miles away from the forecast location. The issue is likely less pronounced
in the winter because the contrast between inland and coastal temperatures is reduced.

Another location-specific anomaly of note is the drastic seasonality of precipitation
forecasts for locations surrounding the Great Lakes, as observed in Figure 4. This unusually
bad forecasting in the winter is likely due to lake-effect snow which is prevalent in the
region. Up to 100% more snow falls downwind of Lake Superior in the winter than would
be expected without the lake-effect (Scott and Huff, 1996). This area has been previously
identified as having the most unpredictable precipitation patterns in the nation (Silver and
Fischer-Baum, 2014). The above examples demonstrate the ease with which comparisons
can be made across space and time with these glyph-based plots.

3.2 Error Scatterplots

Scatterplots reveal outliers and overall trends within weather regions. We constructed an
interactive scatterplot app that allows the examination of trends between the three forecast
error variables for individual forecast lags or aggregated across all forecast lags. Figures 5
(a-c) show examples of plots from the interactive app. The figures show the scatterplot for
the data aggregated over all forecast lags, as well as the scatterplots for lags of 5, 3, and 1,
to illustrate how forecast accuracy changes over forecast lag.

Figure 5 (a) compares minimum temperature forecast accuracy with precipitation ac-
curacy. Weather stations with the worst predictions of minimum temperature are located
in New England and the Intermountain West. New England is known for extreme win-
ter weather and the frequency of extreme weather events seems to be increasing (Cohen
et al., 2018). This likely contributes to the struggle these stations have predicting minimum
temperature. Cali-Florida uniformly has the best predictions of minimum temperature.

Figure 5 (b) compares maximum temperature prediction accuracy with precipitation
accuracy. Four weather stations in the Great Lakes region have the worst precipitation
predictions in the dataset. Poor precipitation forecast accuracy in this region illustrates the
difficulty in forecasting lake-effect snow, as discussed in the previous section. Precipitation
forecast accuracy for the Great Lakes region improves substantially as the forecast lag
decreases.

Figure 5 (c) shows the relationship between minimum and maximum temperature fore-
cast accuracy. Three outliers stand out in these scatterplots, namely Key West, Florida,
Austin, Nevada, and San Francisco, California. Key West predicts both minimum and max-
imum temperature more accurately then any other weather station. Key West also ranks in
the top five for lowest variability in eight of the weather variables, which likely explains
the accurate forecasts. Austin is the poorest predictor of both measures. Seventy miles
along the “loneliest highway in America” (GACC, 2018) separate Austin from its weather
measurements in Eureka, Nevada. The poor predictions for maximum and minimum tem-
perature can be explained by the change in climate over such a large distance, as reflected
in a negative prediction bias of around 5◦F for maximum temperature and a positive bias
of around 7◦F for minimum temperature. San Francisco has good predictions of minimum
temperature and poor predictions for maximum temperature. This feature was observed
and explained in the previous section.

The interactive app developed in conjunction with this project allows for further inves-
tigation of forecast accuracy trends. The app is discussed in Section 4 of this article.
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Figure 4: Glyph plots of weather forecast accuracy averaged by month. The error is repre-
sented as the scaled distance from a center point to the edge of a polygon beginning with
January at the 12:00 position and proceeding clockwise.
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Figure 5: Scatterplots comparing the three forecast error variables. Points of interest dis-
cussed in the text are highlighted in the respective plots.
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Figure 6: Spearman correlations between forecast error variables represented as ellipses
superimposed on a map of the U.S.

3.3 Error Correlations

The scatterplots provide some sense of the correlation between the different error types
among the different city locations. We explore such correlations further through the use of
correlation ellipses (Murdoch and Chow, 1996) superimposed on a map of the U.S. as ob-
served in Figure 6. We calculate Spearman correlations between each pair of measurements
for the locations within each cluster. The sign of the correlation coefficient is denoted by
the slope of the ellipse and the strength of correlation is denoted by the width of the ellipse.
All of the correlations between error variables are positive except for correlations between
minimum temperature and the other two variables in the Northeast. Only a few cluster-
specific correlations are significant. This is likely due to the small number of stations in
many of the weather regions. However, the overall correlations for the 113 weather stations
are all positive and significant. The observations made using this correlation ellipse map
illustrate how this plot style facilitates multi-dimensional comparisons across space.

3.4 Variable Importance

We used random forests (Friedman et al., 2001, pp. 593-594) to determine which weather
variables had the greatest impact on the forecast errors. The data were aggregated over
forecast lag and month. Three random forest models were generated for each weather
region using forecast lag and the means and standard deviations for each of the weather
variables listed in Table 1. Each of the forecast error variables was used as a response.
Figure 7 contains three parallel coordinate plots that show the variable importance measures
of each region for each forecast error variable. The importance measures obtained from
random forests were recentered by subtracting the minimum importance measure and then
rescaled by dividing by the maximum importance measure of the recentered values for each
weather cluster and forecast error variable combination. Thus, the most important variable
within each cluster has a value of 100 and the least important has a value of 0 for each
error measure. This allows direct comparisons of importance between weather regions and
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Figure 7: Variable importance for each of the three forecast accuracy measurements. Vari-
able importance measures have been rescaled to make the measures directly comparable
between weather regions and accuracy measures.

across error measures.
Figure 7 shows that the most important variable for the precipitation error is forecast lag

regardless of weather region. None of the other variables are very important relative to lag.
The Southeast shows minimum dew point (DP) and the standard deviation of maximum
dew point as being somewhat important. Cloud cover is important for the precipitation
error in the Northeast.

Forecast lag is also the most important variable for the maximum temperature error
for all weather regions except Cali-Florida. Maximum wind speed (WS) and the standard
deviation of maximum temperature are more important than lag for the maximum temper-
ature error in Cali-Florida. The variability in maximum temperature is also important for
the Southeast, Northeast, and the Intermountain West. Distance to coast (Dist2Coast) and
elevation are important for the maximum temperature error in the Intermountain West.

Variables that are important for the minimum temperature error varied substantially
across weather regions. The variability in minimum temperatures is important for all re-
gions, but otherwise the important variables vary widely from region to region. Minimum
temperature is the most important for the Northeast and Intermountain West, but maxi-
mum temperature is important for the Southeast. Minimum dew point and the variability
in the maximum sea level pressure (SLP) are important in the Southwest while variability
in minimum sea level pressure is the most important for the Midwest. Forecast lag is not
particularly important for any of the regions.

4. Interactive Explorations

We developed an interactive Shiny app to enhance our weather data explorations. This app
can be accessed at

https://jilllundell.shinyapps.io/finaldataexpoapp/.
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The first tab of the app is an interactive version of the parallel coordinate plot introduced
in Figure 3. The app allows the user to select a weather region which is highlighted on the
graph. Characteristics of the selected region can be easily seen and compared to all other
observations.

The second tab of the app is an interactive scatterplot. Figure 5 (a-c) shows examples of
the graphs from this tab. The user can select up to two of the three forecast error variables
to be on the axes. The forecast lag can also be selected. Points on the scatterplot can
be brushed or clicked and the selected points show up on a map of the U.S. Information
about selected stations is listed in a table under the graph. This app allows for a more
complete exploration of outliers and trends in the data across forecast lags and between
error variables than a static graph.

5. Conclusions

Climate patterns in the United States cleanly separate into six recognizable regions through
a cluster analysis using the means and standard deviations of the weather variables provided
in Table 1. We explored seasonal differences of forecast errors in Figure 4 and observed
that seasonal differences in forecast errors tend to be more pronounced in northern, inland
clusters than southern clusters. We also showed that location specific anomalies, such
as the asymmetry in seasonal maximum temperature forecast errors in San Francisco and
the precipitation forecast errors near the Great Lakes, have plausible explanations in the
literature.

We visualized the pairwise relationship between forecasts errors through a series of
scatterplots across all forecast lags in Figure 5. These plots highlight the superiority of lo-
cations in the Cali-Florida region for predicting minimum temperature across all lags, and
also show that the poor precipitation predictions of the Great Lakes region are mostly con-
fined to forecasts greater than lag 2. Lastly, the abnormally high errors in Austin, Nevada,
are likely a product of the large distance between forecast and measurement locations.
These scatterplots show signs of correlations between the different error measurements
which we rigorously explored with a series of correlation ellipses superimposed on a map
of the U.S. in Figure 6. We found that all clusters show signs of positive correlations among
the error variables with the exception of the Northeast cluster.

Next, we compared the important variables in determining forecast errors across clus-
ters using scaled random forest variable importance measures in Figure 7. These measures
demonstrate that forecast lag is most important in determining the maximum temperature
and the precipitation forecast errors, but not important in predicting the minimum tempera-
ture forecast errors. Many clusters place similar importance on a few variables, but there are
some variables that are important only in a single cluster, such as the importance of maxi-
mum wind speed in predicting the maximum temperature forecast error in Cali-Florida.

For further insight regarding the nature of forecast errors across these six clusters, we
refer readers to our R shiny app described in the previous section. A current version of the
app can be found at the following URL:

https://jilllundell.shinyapps.io/finaldataexpoapp/

This app, in conjunction with the visualizations presented in this article, reinforces the
idea that the U.S. cleanly clusters into well defined weather regions and patterns in forecast
errors are closely related to the unique climates that characterize each region.
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6. Tools and Acknowledgements

The authors would like to thank the Sections on Statistical Computing and Statistical
Graphics of the ASA for providing the data used in this analysis. Additional data informa-
tion regarding specific measurement locations were provided in the weatherData R pack-
age (Narasimhan, 2017). Distance and spatial calculations made use of the fields (Nychka
et al., 2015), geosphere (Hijmans, 2016), mapproj (McIlroy et al., 2017), rgdal (Bivand
et al., 2018), and sp (Bivand et al., 2013) R packages. Other data manipulations and vi-
sualizations made use of the tidyverse (Wickham, 2017), as well as the ggforce (Pedersen,
2018), latex2exp (Meschiari, 2015), RColorBrewer (Neuwirth, 2014), reshape2 (Wickham,
2007) R packages. Variable importance models made use of the randomForest (Liaw and
Wiener, 2002) R package.
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